Tyrosine-Phosphorylated Caveolin-1 Blocks Bacterial Uptake by Inducing Vav2-RhoA-Mediated Cytoskeletal Rearrangements
نویسندگان
چکیده
Certain bacterial adhesins appear to promote a pathogen's extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp)-producing Neisseria gonorrhoeae (P(+)GC) induces an immediate recruitment of caveolin-1 (Cav1) in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function.
منابع مشابه
The Guanine Nucleotide Exchanger Vav2 Interacts with c-ErbB-2 and Induces Alveolar Morphogenesis of Mammary Epithelial Cells
The ErbB receptor tyrosine kinases constitute a subfamily of four structurally related members, the EGF receptor (ErbB-1), ErbB-2, ErbB-3 and ErbB-4. ErbB receptor tyrosine kinases are critical for embryonic development of central and peripheral neural structures and heart. In addition, ErbB receptors play an important role in the postnatal development of the mammary gland. Previous studies sho...
متن کاملSrc is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo.
The gastric pathogen Helicobacter pylori uses a type IV secretion system to inject the bacterial CagA protein into gastric epithelial cells. Within the host cell, CagA becomes phosphorylated on tyrosine residues and initiates cytoskeletal rearrangements. We demonstrate here that Src-like protein-tyrosine kinases mediate CagA phosphorylation in vitro and in vivo. First, the Src-specific tyrosine...
متن کاملPTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity
Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 c...
متن کاملVav family proteins couple to diverse cell surface receptors.
Vav proteins are guanine nucleotide exchange factors for Rho family GTPases which activate pathways leading to actin cytoskeletal rearrangements and transcriptional alterations. Vav proteins contain several protein binding domains which can link cell surface receptors to downstream signaling proteins. Vav1 is expressed exclusively in hematopoietic cells and tyrosine phosphorylated in response t...
متن کاملCytotoxic necrotizing factor from Escherichia coli induces RhoA-dependent expression of the cyclooxygenase-2 Gene.
Cytotoxic necrotizing factor 1 (CNF) is a toxin produced by some isolates of Escherichia coli that cause extraintestinal infections. CNF can initiate signaling pathways that are mediated by the Rho family of small GTPases through a covalent modification that results in constitutive activation. In addition to regulating the assembly of actin stress fibers and focal adhesion complexes, RhoA can a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2010